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Abstract
With the rise of advanced Large Language Models (LLMs), there has also been an increase in the use
and application of Retrieval-Augmented Generation (RAG) systems. Such systems combine generative
models with information retrieval, allowing access to external resources to enhance the quality and
accuracy of responses. RAG systems are becoming integral across various fields, not only improving the
capabilities of LLMs but also enabling more efficient and context-aware outputs. Some RAG systems are
readily accessible through APIs, such as those provided by OpenAI, while others can be custom-built to
meet specific research or application needs.

This work is an extension of the research conducted as part of the “Metadata to Knowledge Graph”
track of the SemTab24 challenge, which involved classifying column headers of tabular data using
controlled vocabularies. For the challenge, we employed seven different LLMs: three closed-source
models (gpt-3.5-turbo-0.125, gpt-4, and gpt-4-turbo) and four open-source models (llama3-80b, llama3-7b,
gemma-7b, and mixtral-8x7b). For the GPT models, we leveraged the RAG system provided by OpenAI,
while for the open-source models, we employed LLamaIndex. Additionally, we evaluated the impact of
different temperature settings (0.5, 0.75, 1.0, 1.25, and 1.5) on model performance.

In this paper we present a preliminary study that highlights the observations and findings from our
participation in the SemTab challenge, offering valuable insights into the capabilities and performance
of RAG systems. We also discuss specific challenges related to vectorizing data for RAG systems and the
role of assistant instructions. Our findings suggest that the nature of the input data can significantly
influence the effectiveness of RAG systems, and that tailored approaches may be required for optimal
results.
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1. Introduction

Retrieval-Augmented Generation (RAG) systems represent a significant advancement in the
field of natural language processing (NLP), enhancing the capabilities of large language models
(LLMs) by combining the strength of retrieval and generation models [1]. The integration of
these two components enables RAG systems to generate responses that are more accurate,
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informative, and contextually relevant compared to standalone LLMs. While traditional LLMs
rely solely on their inherent knowledge, RAG systems can access external information, making
them particularly useful in situations where up-to-date or domain-specific knowledge is required.
In fact, RAGs have been found to help reducing hallucinations [2, 3], knowledge grounding
[4, 5] and personalisation [6, 7]. Due to the popularity of RAG systems, numerous solutions are
now available, both open-source and commercial. Recent studies have introduced benchmarks
and best practices for evaluating RAG systems [8, 9, 10, 11] and comparing open-source and
closed-source systems [12, 13, 14, 15].

Recently, we - the authors of this paper - participated in the “Metadata to Knowledge Graph
(KG)” track of the SemTab Challenge (detailed further in section 3). This track focused on
mapping column metadata to relevant KG terms based on semantic relevance, even when
direct data access was not available. To address this challenge, we suggested solutions that use
both commercial and open-source LLMs and RAGs, and other traditional semantic similarity
approach. In this paper, we revisit and build upon our approaches from the SemTab Challenge,
contributing a comparison and discussion on the performance of commercial and open-source
LLMs and RAGs, highlighting the observed differences. Full details of the approaches we used
for the SemTab Challenge can be found at [16].

2. Retrieval-Augmented Generation

Large Language Models (LLMs) have demonstrated promising abilities in natural language
understanding tasks such as classification [17], entity linking [18], and question answering [19].
However, they often struggle with issues such as hallucinations and limited capacity to access
and interact with external resources [20]. Retrieval-Augmented Generation (RAG) [5] has been
introduced as a solution to overcome these limitations, enabling LLMs to access domain-specific
knowledge more effectively. In a RAG pipeline, external resources are embedded as vectors and
stored in vector databases like Chroma, Weaviate, Pinecone, or OpenAI’s built-in vector store
within the Assistant API, enabling more precise and contextually accurate responses by linking
relevant information during generation.

The landscape of RAGs and LLMs is divided into open-source and closed-source systems,
each with distinct implications for accessibility, cost, flexibility, and performance. Open-source
RAGs and LLMs are publicly available, allowing developers and researchers to access, modify,
and improve the underlying models, fostering transparency and community-driven innovation.
These models offer flexibility, allowing customization of their retrieval mechanisms, parameters
setting, or integration of domain-specific knowledge. However, open-source systems may
sometimes underperform compared to state-of-the-art closed-source counterparts due to more
limited training resources and the absence of large-scale, proprietary datasets.

On the other hand, closed-source RAGs and LLMs are developed and maintained by organi-
zations with access to vast computational resources and proprietary data. Models like OpenAI’s
GPT-4 and Google’s Gemini benefit from advanced architectures, extensive pre-training, and
ongoing performance enhancements. While these models generally outperform open-source
alternatives, they lack transparency, making it difficult to inspect or customize their behavior,
and their “black box” nature can be a limitation when adapting them to niche domains or specific



use cases.
Recent studies have introduced various methods and benchmarks for evaluating the perfor-

mance of RAG systems [8, 9], as well as proposing best practices for optimising their efficiency
and performance [10, 11]. Also, comparisons between open-source and closed-source LLMs
have been explored in a variety of domains and tasks [12, 13, 14, 15]. However, to the best of our
knowledge, no comprehensive study has yet examined how LLMs and RAG systems, particularly
when combined with different temperature settings, perform in the specific context of Semantic
Table Interpretation, as outlined in the SemTab Challenge. In this work, we present insights
gained from our participation in the SemTab Challenge, focusing on the practical differences
between open-source and closed-source LLMs and RAGs, and highlighting key lessons learned
in their application to this domain.

3. SemTab Challenge as Use Case

The SemTab challenge has been running since 2019, and it mainly focuses on tasks related
to Semantic Table Interpretation (STI). It includes multiple tracks, where participants suggest
solutions to tasks such as Column Type Annotation (CTA), Column Entity Annotation (CEA),
and Column Property Annotation (CPA). In this year SemTab challenge, the “Metadata to
KG” track was introduced, where participants are asked to submit solutions for mapping table
metadata to Knowledge Graphs without having access to the underlying data. This track was
divided into two rounds, each using different datasets and vocabularies. In Round 1, participants
mapped 141 table metadata to DBpedia properties. In Round 2, instead, more complexity was
added with 1181 table metadata to be mapped to custom vocabularies. In the following section,
we explain in more details our experimental design in both rounds, and we provide a visual
representation of the methodology in Figure 1. Further details, can be found in our SemTab
challenge paper [16].

3.1. Experimental Design

Our approach to the task set by the “Metada to KG” track treats both rounds as textual infor-
mation retrieval challenges. The objective is to match table metadata—such as column labels,
table names, and other descriptive elements, with the most semantically relevant KG entries.
We employed two different methods: the first utilising LLMs, and the second utilising a more
traditional semantic similarity approach with SentenceBERT[21]. We experimented with a
range of LLMs, both commercial (i.e. GPT-3.5-turbo-0125, GPT-4o, GPT-4-turbo from OpenAI1)
and open-source (i.e. LLama3-70b, LLama3-8b, Gemma-7b, Mixtral-8x7b) models. To investigate
the influence of the models’ creativity on performing the task, we also varied the temperature
settings (0.5, 0.75, 1.0, 1.25, and 1.5). The temperature setting is an important parameter, as
it controls the randomness of the LLM’s responses. Lower temperatures (e.g. 0.5) produce
more deterministic outputs, while higher temperatures (e.g. 1.5) encourage more creativty and
variability.

1https://openai.com

https://openai.com


Figure 1: Experimental design and approaches employed in both Round 1 and 2 of the “Metadata to
KG” track of the SemTab Challenge 2024.

All evaluations were conducted in a zero-shot setting, with no pretraining done on the
specific task or domain, aiming to create a more generalised approach that is not biased towards
any particular domain or KG. Instead, we used a RAG approach to input relevant information
necessary for the task. Specifically, the KGs containing the entries to which the metadata was
mapped were provided as input data to the RAG systems. For the GPT models, we utilized the
RAG system made available through the OpenAI API, while for the open-source models, we
used LLamaIndex2. The mappings we produced were then checked against a test groundtruth
provided by the organisers of the track, and we evaluated the results using two metrics: hit@1
and hit@5. The hit@1 metric checks if the top-ranked match is correct, while hit@5 checks if
the correct match is found within the top five results.

3.2. Summary results from the SemTab Challenge

Overall, we found that the gpt-4o model outperformed other models in both Round 1 and
Round 2, particularly at temperatures of 0.5, 0.75, and 1.0. This result is unsurprising given that
gpt-4o is one of the latest iteration in the GPT model series, featuring enhanced reasoning
capabilities and an advanced ability to handle complex prompts.

The out-of-the-box performance of both closed and open LLMs was poor and unstable in
Round 2. This could be due to the fact that DBpedia, an open dataset used in Round 1, may have
been included in the training corpus of many LLMs. As a result, the models likely already had
inherent knowledge about DBpedia’s structure and properties, which enhanced their ability to
understand and respond effectively to the tasks and prompts in Round 1. However, in Round
2, where the tasks involved glossary files that were not part of the models’ training data, the

2https://www.llamaindex.ai

https://www.llamaindex.ai


LLMs lacked the necessary knowledge to perform as effectively. In this round, we observed
that the LLMs generally performed less effectively, and the approach using SentenceBERT had
better results. Without prior exposure to the specific information in these glossary files, the
models struggled to accurately interpret the prompts and execute the tasks, leading to the
observed poor performance. This highlights the limitation of LLMs when faced with unfamiliar
or domain-specific knowledge not covered in their training corpus.

We report below the results of the LLM and RAG approach in Table 1, and of the approach
with SentenceBERT in Table 2, both taken from [16].

Table 1
Results of different models for sample data in Round 1 and 2. The cells with the “X” refers to tries where
the LLM could not compute the task, and either the API was not returning any results over a long period
of time or, in the case of gemma-7b the model was returning “failure” message. In bold, instead, we
show the best performing results. In the table h1 and h5 refers to Hit@1 and Hit@5 metrics from the
evaluation script.

LLM
Models

Round 1
0.5 0.75 1.0 1.25 1.5

h1 h5 h1 h5 h1 h5 h1 h5 h1 h5

gpt-3.5-turbo-0125 0.42 0.42 0.33 0.42 0.47 0.53 0.41 0.41 0.36 0.36
gpt-4o 0.59 0.89 0.62 0.81 0.64 0.75 0.47 0.67 0.11 0.22

gpt-4-turbo 0.58 0.58 0.56 0.56 0.61 0.61 0.59 0.59 0.36 0.36
llama3-8b 0.22 0.44 0.22 0.44 0.22 0.44 0.33 0.44 0.33 0.33
llama3-70b 0.11 0.11 0.11 0.22 0.11 0.22 0.11 0.22 0.11 0.11
gemma-7b 0.37 0.4 0.44 0.52 0.33 0.47 0.48 0.61 0.37 0.53

mixtral-8x7b 0.33 0.33 0.44 0.56 0.33 0.44 0.44 0.44 0.44 0.44

Round 2
0.5 0.75 1.0 1.25 1.5

h1 h5 h1 h5 h1 h5 h1 h5 h1 h5

gpt-3.5-turbo-0125 0.67 0.67 0.3 0.33 0.63 0.67 0.67 0.67 X X
gpt-4o 0.73 1 0.45 1 0.45 0.58 0.54 0.64 X X

gpt-4-turbo 0 0 X X X X X X X X
llama3-8b 0 0 0 0 0 0 0 0 0 0
llama3-70b 0 0 0 0 0 0 0 0 0 0
gemma-7b X X X X X X X X X X

mixtral-8x7b 0 0 0 0 0 0 0 0 0 0

4. Observations

In this section, we present observations from our use of RAG systems to address the task of
mapping metadata to KG of the SemTab challenge. We present a high-level comparison between
the open-source RAG system (i.e. LlamaIndex) and the commercial RAG system (access through
OpenAI API), in figure 3. The aim of this comparison is to highlight key differences between
these two types of systems.



Table 2
Results of various embedding combinations for sample data in Round 1 and 2 are presented, with best
performing results in bold. The table includes Hit@1 (h1) and Hit@5 (h5) metrics from evaluation script.

Metadata
Embeddings

Glossary
Embeddings

Round 1 Round 2

h1 h5 h1 h5

encode(label) encode(label) 0.56 0.56 0.36 0.55
encode(label) encode(lable + desc) 0.22 0.56 0.45 0.82

encode(label + table_name) encode(label) 0.56 0.56 0.09 0.27
encode(label + table_name) encode(lable + desc) 0.33 0.44 0.64 0.73

encode(label) encode(desc) 0.11 0.33 0.45 0.82
encode(label + table_name) encode(desc) 0.22 0.44 0.64 0.73

encode(label) + encode(table_name) encode(desc) 0 0.33 0.64 0.91
encode(label) + encode(table_name) encode(desc) + encode(label) 0.22 0.44 0.55 0.91
encode(label) + encode(table_name) encode(label) 0.44 0.67 0.27 0.45

Firstly, it is important to note that the commercial RAG system, which integrates OpenAI
Assistant with file search capabilities, supports only OpenAI’s GPT models. In our case, we
utilized gpt-3.5-turbo, gpt-4o, and gpt-4-turbo. LlamaIndex, instead, supports a variety of models
from different providers - for the challenge we employed llama3-8b, llama3-70b, gemma-7b,
and mixtral-8x7b. Further, OpenAI’s default embedding model is text-embedding-3-large with
256 dimensions. While OpenAI offers additional embedding models, such as text-embedding-3-
small and text-embedding-ada-002, the options are limited (more details available at 3. On the
other hand, LlamaIndex utilizes the BAAI/bge-small-en embedding model with 384 dimensions.
Open-source systems allow for the use of a broader range of embedding models, including those
from OpenAI, though this may reduce some of the advantages of using open source solutions.
Some of the most significant differences are the file handling capabilities and the handling of
chunks. OpenAI’s system supports up to 10,000 files, each up to 512 MB. It can manage up to
20 chunks simultaneously, each with a default size of 800 tokens and an overlap of 400 tokens.
In contrast, LlamaIndex’s file storage limitations are more flexible, determined by the vector
database and the machine’s capacity running the vector store. By default, LlamaIndex handles 2
chunks with each chunk being 1024 tokens and an overlap of 20 tokens. Larger chunks and
greater overlap can include more information in the context window, which might be a key
aspect depending on the task. For example, GPT models performed better in our SemTab task
where understanding the semantics of long textual descriptions in the KG was important for
accurate mappings. This result might be related to the larger chunk size and overlap of the
OpenAI models and built-in RAG.

We also noticed that certain practices related to file upload and writing instructions has
influenced the performance of our solutions for the SemTab challenge. For example, we noted
that by repeating certain constraints in both the assistant’s instructions and the user queries
resulted to more accurate mappings and fewer hallucinations. Also, formatting data as separate
files rather than one large file improved accuracy. In Round 2, where custom KGs were used,

3https://platform.openai.com/docs/models/embeddings
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Table 3
Comparison between commercial and open-source RAG systems.

Commercial RAG Open-source RAG

Implementation OpenAI Assistant with file
search

LlamaIndex

LLM models used gpt-3.5-turbo, gpt-4o, gpt-4-
turbo

llama3-8b, llama3-70b, gemma-
7b, mixtral-8x7b

Vector database OpenAI built-in vector ChromaDB
Embedding model text-embedding-3-large (256 di-

mensions), i.e. default
BAAI/bge-small-en (384 dimen-
sions)

Files limitation in vector
DB

10,000 files. Each file can be at
most 512 MB in size and have a
maximum of 5,000,000 tokens.
By default, the size of all the
files uploaded in your project
cannot exceed 100 GB

Depends on the chosen vector
DB and the capacity of ma-
chine that runs the vector store.

Maximum number of
chunks added to context

20 by default, can be cus-
tomized

2 by default, can be customized

Chunk size 800 tokens by default, can be
customized

1024 tokens by default, can be
customized

Chunk overlap 400 tokens, by default, can be
customized

20 tokens by default, can be
customized

dividing the data into smaller files, each representing a specific domain, seemed to allow the
system to track the fact that the files were in someway separate and about distinct knowledge.

5. Discussion and Future Work

In conclusion, while commercial RAG systems provide a streamlined and integrated approach
that simplifies deployment and management, open-source RAGs offer greater flexibility and
customization but require more technical expertise.

A direction for future work is to investigate how to optimize the handling of large datasets
and chunk management across both systems. This could involve developing better strategies
for file segmentation and chunk overlap to improve performance and context understanding.
Additionally, it would be beneficial to explore the impact of different embedding models on
performance in various tasks, potentially creating guidelines for selecting the most effective
models based on task requirements.

Another research area is enhancing the robustness of query and instruction handling to reduce
hallucinations. Experimenting with constraints repetition, instructions and user queries designs
could lead to more accurate results. Further, investigating the benefits of data formatting, such
as fragmenting large KGs into smaller, domain-specific files, could offer insights into improving
accuracy and RAG systems.

Finally, while in this work we provide some insights on the differences between commercial
and open-source RAG systems, there is a need for creating benchmark tools and performance



metrics, which would help users make informed decisions about which solution, system and
models is better suited for their needs.
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