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Abstract
Cybersecurity threat detection and analysis have been increasingly prominent research areas in recent
years. Like in other fields, the rise of generative AI and Large Language Models (LLMs) have created
new opportunities to advance cybersecurity, but also highlighted some of the key challenges LLMs
suffer from – including hallucinations, knowledge deficiencies, and lack of ability to handle factual
information. To tackle such limitations, Retrieval Augmented Generation (RAG) – which dynamically
retrieves relevant information from external sources to enhance the capabilities of LLMs – has shown
promise in many domains. However, naïve RAG approaches typically operate on text and do not consider
symbolic representations, conceptual meaning and relations in the data. In the cybersecurity domain,
such RAG approaches do not allow to consider pivotal aspects such as network structure, threat attack
patterns, and intricate factual security knowledge which are essential to identify suspicious activities and
combine clues to discover and reconstruct attacks. To address this challenge, we proposed CyKG-RAG,
a novel framework that integrates Knowledge Graphs (KGs) with the RAG approach and is tailored to
improve cybersecurity detection and analysis. Our framework utilizes the rich semantic relationships
and structured data within KGs to provide contextually relevant information, thereby enhancing the
accuracy and reliability of cyber threat detection. We validate our approach through real-world use cases,
which demonstrate its effectiveness and show promising results for improving cybersecurity measures.
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1. Introduction

Knowledge-driven approaches have gained prominence in cybersecurity, facilitating the stan-
dardization of terminology and the automation of decision-making processes through the use of
ontologies and knowledge graphs. As a result, a number of formal knowledge representations
in cybersecurity (e.g., [1, 2, 3, 4, 5, 6]) and methodologies for the construction of knowledge
graphs for cybersecurity [7] are now available.

Despite the active development of Semantic Web technologies and the increasing adoption of
graph-based methods in various domains, a notable discrepancy persists between the competen-
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cies of cybersecurity professionals and their capacity to effectively utilize semantic technologies
in security processes. The challenge of enabling security professionals to access, query, and
leverage knowledge graphs without requiring in-depth expertise in the semantic domain has
long been an obstacle. This represents a significant gap, as formal knowledge representations
have the potential to alleviate several critical challenges facing cybersecurity professionals, in-
cluding (i) the global shortage of skilled cybersecurity personnel12, (ii) a steep learning curve [8],
(iii) the overwhelming volume of data leading to analyst fatigue and overload34, and (iv) the
rapidly evolving threat landscape requiring constant vigilance and adaptability5.

With the advent of Large Language Models (LLMs) such as ChatGPT, LLama, Claude, and
Gemini [9, 10], researchers have started to explore how these models can improve cybersecurity
tasks [11]. However, these models face serious limitations. They often struggle with complex
reasoning tasks and maintaining consistency across multiple queries, making it difficult to
rely on them for complicated cybersecurity challenges [12]. In addition, they often fail when
dealing with factual data sets, sometimes introducing irrelevant or incorrect information — a
problem commonly referred to as “hallucination", where the model generates content that is
not supported by evidence [13]. This raises significant trust issues, as ensuring the quality and
reliability of information generated by LLMs remains a formidable challenge, especially in a
domain as critical as cybersecurity.

To address these issues in the cybersecurity context, we investigate the integration of domain-
specific knowledge graphs with LLMs. Our goal is to support security analysts in tasks such as
log analysis and attack detection. Among the various strategies for integrating knowledge into
LLMs, including fine-tuning, prompt engineering, and knowledge editing, we focus on Retrieval-
Augmented Generation (RAG) [14]. This technique enables LLMs to answer user queries using
data sets without the need for additional model training. RAG was originally designed for
scenarios where answers are embedded in specific regions of text. However, it often struggles
to synthesize insights from disparate but related pieces of information. Such volumes of text
can exceed the limits of LLM context windows, and the expansion of such windows may not be
sufficient, as information can be “lost in the middle” of longer contexts [15]. Furthermore, RAG
encounters difficulties when tasked with understanding and summarizing semantic concepts
across large data sets or voluminous documents (e.g., logs), as is often the case in cybersecurity.
These challenges underscore the need for formal knowledge representations, which are well
suited for defining structured concepts, their relationships, and associated metadata.

In this paper, we present CyKG-RAG, a RAG approach that integrates cybersecurity knowledge
represented as graphs. Our framework leverages the rich semantic relationships and structured
data within KGs to provide contextually relevant information. We validate our approach through
real-world use cases.

1https://www.isc2.org/Insights/2023/11/ISC2-Cybersecurity-Workforce-Study-Looking-Deeper-into-the-
Workforce-Gap

2https://www.csoonline.com/article/657598/cybersecurity-workforce-shortage-reaches-4-million-despite-
significant-recruitment-drive.html

3https://www.forbes.com/sites/edwardsegal/2021/11/08/alert-fatigue-can-lead-to-missed-cyber-threats-and-staff-
retentionrecruitment-issues-study/

4https://www.openaccessgovernment.org/fighting-alert-fatigue-and-building-resilient-cybersecurity-
strategies/139904

5https://www.weforum.org/agenda/2024/01/cybersecurity-ai-frontline-artificial-intelligence/



2. Related Work

Two strands of research are of particular interest in the context of this paper: (i) modeling of
knowledge in the cybersecurity domain, and (ii) graph-informed RAG approaches.

Knowledge Graphs/Ontologies in Cybersecurity Formal knowledge representations
have been topic of extensive research in the cybersecurity domain. Early research in this field
focused on high-level conceptualization of information security knowledge in ontologies (e.g.,
[16, 1, 17, 18, 19, 20, 21]). These ontologies typically comprise a set of fundamental concepts,
such as asset, threat, vulnerability, and countermeasure. In addition, many ontologies specialized
for particular application domains (e.g., risk management, incident management) have been
released. A comprehensive survey and classification of security ontologies can be found in [22].

More recently, a number of initiatives have aimed at developing security ontologies that
cover information sharing standards such as CVE, CVSS, and CAPEC. These standards serve as
a vital source for contemporary cybersecurity knowledge and enable exchange of vulnerability
information. As part of a research project (STUCCO), [23] presents an approach for a cyberse-
curity knowledge graph that integrates information from both structured and unstructured data
sources. The objective in [6] is to integrate heterogeneous knowledge schemas from various
cybersecurity systems and standards and to create a Unified Cybersecurity Ontology (UCO)
that aligns CAPEC, CVE, CWE, STIX, Trusted Automated eXchange for Indicator Information
(TAXII), and Att&ck. [2] took a more comprehensive approach, presenting not only a cyber-
security ontology but also addressing the dynamic nature of the cybersecurity domain and
introducing an ETL workflow that updates the knowledge graph as new information becomes
available. Moreover, it can be easily linked to locally available data and incorporated into oper-
ational scenarios. Open-access Cybersecurity Knowledge Graphs (CSKGs) include CSKG [4],
Open-CyKG [5], ATT&CK-KG [24] and the SEPSES-CSKG [2, 3]. For further details on CSKGs,
we refer to recent surveys [25, 26, 27, 28].

LLM and Retrieval Augmented Generation In Retrieval-Augmented Generation (RAG),
relevant information is retrieved from external sources and incorporated into the context window
of large language models (LLMs). The framework presented in [29] outlines three distinct RAG
paradigms: Naïve RAG, Advanced RAG, and Modular RAG. Naïve RAG approaches are typically
based on the conversion of documents into text, the splitting of text into chunks, and the
embedding of these chunks into a vector space. Advanced RAG systems have undergone further
development to incorporate pre-retrieval and post-retrieval strategies to enhance retrieval
quality. Modular RAG systems introduce iterative and dynamic cycles of interleaved retrieval
and generation, thereby enhancing the flexibility and effectiveness of the retrieval process.

The intersection of graphs and LLMs in RAG represents an emerging research area with
significant contributions in knowledge graph creation [30], completion [31], and causal graph
extraction [32, 33]. Advanced RAG systems have also begun to use graph-based indexing [34].
[35] present the G-Retriever method, which enables users to ask questions about a graph via
a conversational interface. The method can be fine-tuned to enhance graph understanding
via soft prompting. Another approach to add graph reasoning abilities to existing LLMs is



Graph-ToolFormer [36], which aims to enable graph learning. Furthermore, SURGE [37] sup-
ports context-relevant and knowledge-grounded dialogues with a KG. In comparison to other
knowledge-grounded methods, it employs contrastive learning to guarantee that the generated
texts exhibit a high degree of similarity to the retrieved subgraphs. An important approach for
our work is FABULA [38], a system to automatically generate intelligence reports for events
utilizing contextual narrative features found in OSINT. GraphRAG [39] addresses the challenge
that RAG fails on global questions directed at an entire text corpus and hence, introduces an
approach that builds a graph-based index from text corpora, and then partitions the graph
into hierarchical community structures. For query-focused summarization of an entire cor-
pus, a map-reduce approach is utilized, which first answers the query independently based
on each community summary, and then summarizes all relevant partial answers into a final
global answer. In the domain of question answering and multi-document question answering
(MD-QA) [40], [40] use Knowledge Graph Prompting (KGP) to formulate the right context
in prompting LLMs for MD-QA, which consists of a graph construction module and a graph
traversal module.

3. CyKG-RAG Framework

The objective of this research is to enhance existing LLMs with a domain-specific RAG approach
that leverages symbolic representations to address cybersecurity issues pertaining to private
and dynamic security-related information such as log data, security events and IT infrastructure.
Additionally, we seek to utilize existing cybersecurity information including information about
vulnerabilities, weaknesses and attack patterns to assist cybersecurity analysts in their daily
tasks.

In this section, we present our approach for a RAG system for cybersecurity. We discuss the
RAG architecture including KG construction, vector embedding of an existing cybersecurity
KG, and the retrieval mechanism. Finally, we present our prototype implementation.

3.1. The RAG Architecture

The architecture illustrated in Figure 1 gives an overview of our RAG system that is specifically
tailored for cybersecurity and leverages knowledge graphs. It can be broken down into the
following components:

(i) Knowledge Graph Construction Our CyKG-RAG approach leverages knowledge graph
representations for domain-specific knowledge related to cybersecurity, including e.g., log
events from hosts, network and infrastructure descriptions, as well as cybersecurity information.
This information is essential for security analysts in answering cybersecurity-related questions,
and hence, will be integrated into our RAG system.

As depicted on Figure 1, the KG is constructed upon a dual type source of information i.e., (i)
the Log & Event Graphs are constructed from local log data and events, which represent private
organization-specific information related to cybersecurity. Furthermore, (ii) external data from
publicly available cybersecurity information, such as Common Vulnerabilities and Exposures



Figure 1: CyKG-RAG Architecture

(CVE), Common Weakness Enumeration (CWE), Common Attack Pattern Enumeration and
Classification (CAPEC), MITRE ATT&CK, and other threat intelligence are included. This
information is continuously updated to ensure that the KG reflects the most recent landscape
in cybersecurity threats and defenses. This constructed KG can then be used to contextualize
local security events with external cyber threat intelligence to provide a more comprehensive
understanding of potential threats.

The construction of KG can be done in two ways: (i) LLM-Based KG Construction. This
approach transforms semi-structured and unstructured information into a KG representation
by means of LLMs. (ii) Rule-Based KG Construction. This approach transforms structured
information into a KG by using a declarative language, e.g., RML that maps the data based on
an ontology/schema and transform them into a KG.

(ii) Vector Embedding in the Existing Cybersecurity KG The advantage of incorporating
vector embeddings into a KG lies in their ability to enable flexible full-text search within unstruc-
tured elements of the KG, particularly for security-related data that is typically unstructured
(e.g., log message, security events, etc). Vector embeddings in KG nodes helps to identify relevant
nodes and their relationships to other entities. This capability is particularly helpful compared
to traditional graph queries (e.g., SPARQL, Cypher) which may struggle to retrieve information
due to mismatched and incomplete data within the KG.

The goal of vector similarity search is to locate elements (i.e., nodes) in the KG based on the
similarity of their vector embeddings. These embeddings are encoded and stored as properties
within the nodes. Typically, a node represents a chunk of data that is part of a larger document.
In a cybersecurity context, a document could be a security log source, and a chunk might be a
log line containing a message about particular events in the system.



Figure 2: RAG question answering through vector similarity search in a KG

Figure 2 shows an example of similarity search using vector embeddings in log KG. As shown
in the top-left section of the figure, the process starts with KG construction that transforms
entries (e.g., "Mar 4 19:25:47 mail auth: pam_unix(dovecot): authentication failure; logname...")
from a log source (e.g., Authlog) into a log graph. The log graph is then fragmented into smaller
units called "Chunks" (e.g., Chunk-1, Chunk-2, Chunk-3, etc.). These chunks are nodes in the KG
and represent individual log lines associated with specific nodes that capture relevant entities
(such as user "Daryl" and the "Davecot" mailserver) and their relationships (e.g., mentions,
authentication failure). Each node in the KG, which represents a chunk of log data, is associated
with an embedding – i.e., a numerical representation that captures the semantic meaning of the
text within the chunk. These embeddings are then stored in a Vector Index. The embeddings
allow the system to perform a vector similarity search to retrieve the most contextually relevant
chunks in response to a query. For instance, the node property section shows an embedding
corresponding to Chunk-2, which is linked to an authentication failure event involving Daryl.
The chunk-wise embedding enables the system to match the query against the most relevant
log lines based on their semantic similarity rather than just keyword matching.

(iii) Retrieval and Question Answering Mechanism As depicted in Figure 1, the retrieval
mechanism of our RAG approach consists of the following steps:

• Security Analyst’s Question 1○ The process starts with a Security Analyst that asks a
cybersecurity question in natural language. This question is integrated into a prompt and
sent to the LLM.

• Graph Query & Vector (Semantic) Search 2○ Based on the given question and contex-
tual knowledge (i.e, KG schema, vocabulary), the LLM then generates a graph query —
i.e., either a SPARQL query for Resource Description Framework (RDF) KGs or a Cypher
query for Labelled Property Graphs (LPGs) — that is executed against the KG. Note that
the generated queries may not always answer the given question – e.g., because the
LLM may produce an invalid query or the query may yield an empty result. To address



this limitation, our framework combines query generation with vector (semantic) Search
based on similarities between the vector representation of the question and the vector
representation of the embeddings in the KG. As depicted in Figure 2, the question "Who is
Daryl? What did he do on the System?" is first encoded into a query embedding - a vector
that represents the semantic meaning of the questions - via an LLM. This query embedding
is then compared against the Vector Index containing the embeddings of log data chunks.
Through vector similarity search, the system identifies the most relevant chunks and
their associate nodes in the KG. The identified nodes can then be used as a starting point
to traverse other paths (e.g., via graph queries) and retrieve other information relevant to
the question.

• Cybersecurity Knowledge and Log Event Graphs 3○ The generated queries target
two primary data sources:

– Log & Event Graphs: These graphs represent private/local-information constructed
from cybersecurity-related data such as logs, events and infrastructure information.

– Cybersecurity Knowledge Graphs: These graphs represent external-information that
contain broader cybersecurity knowledge constructed from publicly available data
sources – such as vulnerabilities, weaknesses, attack patterns, etc.

• Results Retrieval 4○ The results retrieved (i) from the Log & Event and Cybersecurity
Knowledge Graphs based on a Graph query and (ii) via Vector (similarity) search are
passed to the LLM together with the prompt 5○.

• Synthesizing Results 6○ The LLM processes and synthesizes the retrieved information
to generate a final answer that is presented to the Security Analyst.

3.2. Prototypical Implementation

(i) KG Construction Our approach to KG construction is based on two fundamental tech-
niques. The first is rule-based construction, which we leverage to ingest structured cybersecurity
information. For this purpose, we reuse the existing CSKG[2] which employs RDF Mapping
Language (RML) to map and transform structured information into a KG. We used Ontotext
GraphDB6, an Open Source graph database to store the RDF data.

Second, we utilize LLM-based construction to transform semi-structured and unstructured
information from private or local data (e.g., log sources) into a KG. In particular, we use Langchain
LLMGraph Transformers7, a Python based tool that converts documents into graph-based formats
using an LLM. In our experiments, we used ChatGPT 3.5-turbo8 to perform these tasks.

To create vector embeddings for the constructed KGs, we leverage OpenAIEmbedding9, a
service provided by OpenAI that generates vector embeddings for text data. The generated
vector embeddings are then stored in a Neo4J vector store10.

6https://www.ontotext.com/products/graphdb/?ref=menu
7https://python.langchain.com/v0.1/docs/use_cases/graph/constructing/
8https://platform.openai.com
9https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/
10https://neo4j.io/

https://www.ontotext.com/products/graphdb/?ref=menu
https://python.langchain.com/v0.1/docs/use_cases/graph/constructing/
https://platform.openai.com
https://python.langchain.com/v0.2/docs/integrations/text_embedding/openai/
https://neo4j.io/


(ii) Simple Chatbot Interface for Q&A To facilitate the interaction of security analysts
with the CyKG-RAG system, we developed a simple web-based chatbot system interface as
shown in Figure 3. We used Streamlit 11, an open-source Python framework to rapidly build
web apps. Within the resulting app, security analysts can ask security-relevant questions in
natural language and get the response back together with an explanation (e.g., the actual query
and its results from the KG).

Figure 3: CyKG-RAG Q&A System Interface

The interface consists of several elements, (i) a Question Area where the security analyst can
input queries, (ii) a Final Answers Box that displays the answers generated by the system, (iii) a
Generated Graph Query section that shows the actual query created by the LLM, which could
be either a SPARQL or Cypher query, and (iv) a Query Result section that provides the data
passed to the LLM, including results obtained from the graph database or vector embeddings.

4. Experiment and Use Case Application

In this section, we describe a series of experiments that we conducted to demonstrate the
feasibility of our RAG approach for cybersecurity-related question-answering and analysis
tasks. We started with general cybersecurity questions related to cyber threat intelligence
and vulnerability assessment using continuously updated CVE information, followed by log
analysis of a specific log dataset. Different colors are used to distinguish the part of our retrieval
process: (i) the blue text box represents the natural question asked by the security analyst,
(ii) the green box represents the LLM’s generated graph query (e.g., SPARQL, Cypher), (iii) the
red box represents the query results obtained from the graph database or retrieval results from
vector similarity, and (iv) the brown box represents the final answer to the question.

11https://streamlit.io/

https://streamlit.io/


(i) General Questions on Cyber threat Intelligence In this demonstration, we leverage
our existing SEPSES CSKG12 as a knowledge source for our RAG system. In this case, the system
can be used to answer questions related to cyber threat intelligence (e.g., MITRE ATT&CK13)
including queries about attack techniques, tactics, etc.

Question

Which MITRE ATT&CK techniques are used by attackers to escalate their privileges within a network?

Generated SPARQL Query

PREFIX dcterms: <http://purl.org/dc/terms/>
PREFIX attack: <http://w3id.org/sepses/vocab/ref/attack#>

SELECT ?technique ?title WHERE {
?technique a attack:Technique .
?technique dcterms:description ?description .
FILTER(CONTAINS(?description, "escalate")

&& CONTAINS(?description, "privileges"))
?technique dcterms:title ?title .

}

Query Result passed to the LLM

technique title
1 res:attack/technique/boot-or-logon-initialization-scripts "Boot or Logon Initialization Scripts"
2 res:attack/technique/token-impersonation-theft "Token Impersonation/Theft"
3 res:attack/technique/windows-service "Windows Service"
4 ... "..."

Final Answer

Attackers may use several MITRE ATT&CK techniques to escalate their
privileges within a network. These techniques include:
1. **Boot or Logon Initialization Scripts**
2. **Token Impersonation/Theft**
3. **Windows Service**
...

(ii) Vulnerability Assessment over Continuously Updated Vulnerability Information
With the same knowledge source we used in use case (i), we demonstrate how our RAG system
can effectively handle the dynamic retrieval of rapidly evolving cybersecurity information. For
instance, the system can assess the current vulnerability of a specific component or product
identified by its CVE ID. This would not be possible by an LLM alone, since it would require
frequent updates (e.g., fine-tuning) whenever CVEs are released.

12https://w3id.org/sepses/
13https://attack.mitre.org/

https://w3id.org/sepses/
https://attack.mitre.org/


Question

What is the CVE identifier and its description that contains the vulnerability of C-MORE EA9 HMI? Mention
three of them!

Generated SPARQL Query

PREFIX dcterms: <http://purl.org/dc/terms/>
SELECT ?identifier ?description
WHERE {
?cve a <http://w3id.org/sepses/vocab/ref/cve#CVE> ;

dcterms:identifier ?identifier ;
dcterms:description ?description .

FILTER regex(?description, "C-MORE EA9 HMI", "i")
} LIMIT 3

Query result passed to the LLM

identifier description
1 "CVE-2024-25138" " In AutomationDirect C-MORE EA9 HMI, credentials used by the platform .. "
2 "CVE-2024-25137" "In AutomationDirect C-MORE EA9 HMI there is a program that copies a .."
3 "CVE-2024-25136" "There is a function in AutomationDirect C-MORE EA9 HMI that allows an .."

Final Answer

Three CVE identifiers related to vulnerabilities in AutomationDirect C-MORE EA9 HMI are CVE-2024-25138,
CVE-2024-25137, and CVE-2024-25136.
CVE-2024-25138: In AutomationDirect C-MORE EA9 HMI, credentials used by the platform are stored as
plain text on the device.
CVE-2024-25137: In AutomationDirect C-MORE EA9 HMI, there is a program that copies a buffer of a size
controlled by the user into a limited sized buffer..
CVE-2024-25136: There is a function in AutomationDirect C-MORE EA9 HMI that allows an attacker to
send a relative path in ..

(iii) Security LogAnalysis This scenario demonstrates the use of our RAG system to facilitate
question answering against private or local information (e.g., log sources). For this experiment,
we used a dataset derived from the AIT dataset[41] and constructed a KG from it using an LLM.
Additionally, we generated vector embeddings to enable full-text search against the constructed
KG.

Question

Who is Daryl? What did he do on the system? What time he did it?



Graph and vector data passed to the LLM

Graph data:
Dovecot - USES -> Daryl
Dovecot - AUTHENTICATES -> Daryl
Dovecot - AUTHENTICATION_FAILURE -> Daryl
Dovecot - AUTHORIZES -> Daryl
Dovecot - FAILED_AUTHENTICATION -> Daryl

Vector data:
text: Mar 4 19:25:49 mail auth: pam_unix(dovecot:auth): authentication failure;..
text: Mar 4 19:25:48 mail auth: pam_unix(dovecot:auth): authentication failure;..
text: Mar 4 19:28:35 mail auth: pam_unix(dovecot:auth): authentication failure;..
text: Mar 4 19:25:54 mail auth: pam_unix(dovecot:auth): authentication failure;..

Final Answer

Daryl is a user on the system who attempted to authenticate multiple times but failed each time. He tried to
log in at 19:25:49, 19:25:48, 19:28:35, and 19:25:54.’

5. Conclusions and Future Work

Cybersecurity is a domain characterized by complex and fast-evolving domain knowledge as
well as highly dynamic environments and information flows in various forms (such as logs).
Furthermore, the relational nature of such information requires means to connect chunks of
disparate information effectively and reliably. These characteristics pose a challenge for LLMs,
which have shown significant potential in the cybersecurity domain, but cannot easily be
retrained on updated information, have difficulties operating on factual information reliably,
and are prone to effects like hallucination.

In this paper, we proposed to combine multiple retrieval-augmented generation techniques
to tackle such inherent limitations and leverage LLMs in cybersecurity analysis workflows. To
this end, we introduced CyKG-RAG, a RAG-based question-answering system that combines
symbolic representation of security knowledge in (knowledge) graph structures with query gen-
eration and vector embedding-based semantic similarity search to retrieve relevant information
in real-time and synthesize meaningful answers. Our preliminary evaluation of CyKG-RAG in
example use cases ranging from general cybersecurity knowledge to answering questions on
dynamic knowledge such as emerging vulnerabilities and on real-time log data show highly
promising results. In our future work, we will evaluate the approach more comprehensively in
a broader set of experimental settings and investigate the relative effectiveness of various RAG
techniques and different approaches to combine them in different scenarios.
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